2,186 research outputs found

    19.2% Efficient InP Heterojunction Solar Cell with Electron-Selective TiO2 Contact.

    Get PDF
    We demonstrate an InP heterojunction solar cell employing an ultrathin layer (āˆ¼10 nm) of amorphous TiO2 deposited at 120 Ā°C by atomic layer deposition as the transparent electron-selective contact. The TiO2 film selectively extracts minority electrons from the conduction band of p-type InP while blocking the majority holes due to the large valence band offset, enabling a high maximum open-circuit voltage of 785 mV. A hydrogen plasma treatment of the InP surface drastically improves the long-wavelength response of the device, resulting in a high short-circuit current density of 30.5 mA/cm2 and a high power conversion efficiency of 19.2%

    The RNA helicase, eIF4A-1, is required for ovule development and cell size homeostasis in Arabidopsis

    Get PDF
    eIF4A is a highly conserved RNAā€stimulated ATPase and helicase involved in the initiation of mRNA translation. The Arabidopsis genome encodes two isoforms, one of which (eIF4Aā€1) is required for the coordination between cell cycle progression and cell size. A Tā€DNA mutant eif4a1 line, with reduced eIF4A protein levels, displays slow growth, reduced lateral root formation, delayed flowering and abnormal ovule development. Loss of eIF4Aā€1 reduces the proportion of mitotic cells in the root meristem and perturbs the relationship between cell size and cell cycle progression. Several cell cycle reporter proteins, particularly those expressed at G2/M, have reduced expression in eif4a1 mutant meristems. Single eif4a1 mutants are semisterile and show aberrant ovule growth, whereas double eif4a1Ā eif4a2 homozygous mutants could not be recovered, indicating that eIF4A function is essential for plant growth and development

    Learning to Generate Image Embeddings with User-level Differential Privacy

    Full text link
    Small on-device models have been successfully trained with user-level differential privacy (DP) for next word prediction and image classification tasks in the past. However, existing methods can fail when directly applied to learn embedding models using supervised training data with a large class space. To achieve user-level DP for large image-to-embedding feature extractors, we propose DP-FedEmb, a variant of federated learning algorithms with per-user sensitivity control and noise addition, to train from user-partitioned data centralized in the datacenter. DP-FedEmb combines virtual clients, partial aggregation, private local fine-tuning, and public pretraining to achieve strong privacy utility trade-offs. We apply DP-FedEmb to train image embedding models for faces, landmarks and natural species, and demonstrate its superior utility under same privacy budget on benchmark datasets DigiFace, EMNIST, GLD and iNaturalist. We further illustrate it is possible to achieve strong user-level DP guarantees of Ļµ<2\epsilon<2 while controlling the utility drop within 5%, when millions of users can participate in training

    Dust Ejection from Planetary Bodies by Temperature Gradients: Laboratory Experiments

    Full text link
    Laboratory experiments show that dusty bodies in a gaseous environment eject dust particles if they are illuminated. We find that even more intense dust eruptions occur when the light source is turned off. We attribute this to a compression of gas by thermal creep in response to the changing temperature gradients in the top dust layers. The effect is studied at a light flux of 13 kW/(m*m) and 1 mbar ambient pressure. The effect is applicable to protoplanetary disks and Mars. In the inner part of protoplanetary disks, planetesimals can be eroded especially at the terminator of a rotating body. This leads to the production of dust which can then be transported towards the disk edges or the outer disk regions. The generated dust might constitute a significant fraction of the warm dust observed in extrasolar protoplanetary disks. We estimate erosion rates of about 1 kg/s for 100 m parent bodies. The dust might also contribute to subsequent planetary growth in different locations or on existing protoplanets which are large enough not to be susceptible to particle loss by light induced ejection. Due to the ejections, planetesimals and smaller bodies will be accelerated or decelerated and drift outward or inward, respectively. The effect might also explain the entrainment of dust in dust devils on Mars, especially at high altitudes where gas drag alone might not be sufficient.Comment: 7 pages, 10 figure

    Metal-catalyzed crystallization of amorphous carbon to graphene

    Get PDF
    Metal-catalyzed crystallization of amorphous carbon to graphene by thermal annealing is demonstrated. In this "limited source" process scheme, the thickness of the precipitated graphene is directly controlled by the thickness of the initial amorphous carbon layer. This is in contrast to chemical vapor deposition processes, where the carbon source is virtually unlimited and controlling the number of graphene layers depends on the tight control over a number of deposition parameters. Based on the Raman analysis, the quality of graphene is comparable to other synthesis methods found in the literature, such as chemical vapor deposition. The ability to synthesize graphene sheets with tunable thickness over large areas presents an important progress toward their eventual integration for various technological applications.open826
    • ā€¦
    corecore